Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668619

RESUMO

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Assuntos
Toxina da Cólera , Cisteína Endopeptidases , Complexo de Golgi , Humanos , Toxina da Cólera/metabolismo , Cisteína Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Endocitose
2.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535799

RESUMO

Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter for these applications. CTB is a robust protein that is amenable to reengineering for diverse applications; however, protein redesign has mostly focused on modifications of the N- and C-termini of the protein. Exploiting the full power of rational redesign requires a detailed understanding of the contributions of the surface residues to protein stability and binding activity. Here, we employed Rosetta-based computational saturation scans on 58 surface residues of CTB, including the GM1 binding site, to analyze both ligand-bound and ligand-free structures to decipher mutational effects on protein stability and GM1 affinity. Complimentary experimental results from differential scanning fluorimetry and isothermal titration calorimetry provided melting temperatures and GM1 binding affinities for 40 alanine mutants among these positions. The results showed that CTB can accommodate diverse mutations while maintaining its stability and ligand binding affinity. These mutations could potentially allow modification of the oligosaccharide binding specificity to change its cellular targeting, alter the B-subunit intracellular routing, or impact its shelf-life and in vivo half-life through changes to protein stability. We anticipate that the mutational space maps presented here will serve as a cornerstone for future CTB redesigns, paving the way for the development of innovative biotechnological tools.


Assuntos
Toxina da Cólera , Mutagênicos , Humanos , Gangliosídeo G(M1) , Ligantes , Mutagênese
3.
Angew Chem Int Ed Engl ; 63(8): e202310862, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38072831

RESUMO

Quantitative and selective labelling of proteins is widely used in both academic and industrial laboratories, and catalytic labelling of proteins using transpeptidases, such as sortases, has proved to be a popular strategy for such selective modification. A major challenge for this class of enzymes is that the majority of procedures require an excess of the labelling reagent or, alternatively, activated substrates rather than simple commercially sourced peptides. We report the use of a coupled enzyme strategy which enables quantitative N- and C-terminal labelling of proteins using unactivated labelling peptides. The use of an aminopeptidase in conjunction with a transpeptidase allows sequence-specific degradation of the peptide by-product, shifting the equilibrium to favor product formation, which greatly enhances the reaction efficiency. Subsequent optimisation of the reaction allows N-terminal labelling of proteins using essentially equimolar ratios of peptide label to protein and C-terminal labelling with only a small excess. Minimizing the amount of substrate required for quantitative labelling has the potential to improve industrial processes and facilitate the use of transpeptidation as a method for protein labelling.


Assuntos
Aminoaciltransferases , Peptidil Transferases , Aminopeptidases , Proteínas de Bactérias/metabolismo , Aminoaciltransferases/metabolismo , Peptídeos/metabolismo
4.
Protein Sci ; 32(12): e4830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916438

RESUMO

Targeted killing of tumor cells while protecting healthy cells is the pressing priority in cancer treatment. Lectins that target a specific glycan marker abundant in cancer cells can be valuable new tools for selective cancer cell killing. The lectin Shiga-like toxin 1 B subunit (Stx1B) is an example that specifically binds globotriaosylceramide (CD77 or Gb3), which is overexpressed in certain cancers. In this study, a human lactoferricin-derived synthetic retro di-peptide R-DIM-P-LF11-215 with antitumor efficacy was fused to the lectin Stx1B to selectively target and kill Gb3+ cancer cells. We produced lectin-peptide fusion proteins in Escherichia coli, isolated them by Gb3-affinity chromatography, and assessed their ability to selectively kill Gb3+ cancer cells in a Calcein AM assay. Furthermore, to expand the applications of R-DIM-P-LF11-215 in developing therapeutic bioconjugates, we labeled R-DIM-P-LF11-215 with the unique reactive non-canonical amino acid Nε -((2-azidoethoxy)carbonyl)-L-lysine (AzK) at a selected position by amber stop codon suppression. The R-DIM-P-LF11-215 20AzK and the unlabeled R-DIM-P-LF11-215 parent peptide were produced as GST-fusion proteins for soluble expression in E. coli for the first time. We purified both variants by size-exclusion chromatography and analyzed their peptide masses. Finally, a cyanin 3 fluorophore was covalently conjugated to R-DIM-P-LF11-215 20AzK by strain-promoted alkyne-azide cycloaddition. Our results showed that the recombinant lectin-peptide fusion R-DIM-P-LF11-215-Stx1B killed >99% Gb3+ HeLa cells while Gb3-negative cells were unaffected. The peptides R-DIM-P-LF11-215 and R-DIM-P-LF11-215 20AzK were produced recombinantly in E. coli in satisfactory amounts and were tested functional by cytotoxicity and cell-binding assays, respectively.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Escherichia coli/genética , Células HeLa , Lectinas , Peptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Chem Soc Rev ; 52(4): 1273-1287, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36723021

RESUMO

Cell surface protein-carbohydrate interactions are essential for tissue-specific recognition and endocytosis of viruses, some bacteria and their toxins, and many glycoproteins. Often protein-carbohydrate interactions are multivalent - multiple copies of glycans bind simultaneously to multimeric receptors. Multivalency enhances both affinity and binding specificity, and is of interest for targeted delivery of drugs to specific cell types. The first such example of carbohydrate-mediated drug delivery to reach the clinic is Givosiran, a small interfering ribonucleic acid (siRNA) that is conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand. This ligand enables efficient uptake of the nucleic acid by the asialoglycoprotein receptor (ASGP-R) on hepatocytes. Synthetic multivalent ligands for ASGP-R were among the first 'cluster glycosides' developed at the birth of multivalent glycoscience around 40 years ago. In this review we trace the history of 'GalNAc targeting' from early academic studies to current pharmaceuticals and consider what other opportunities could follow the success of this delivery technology.


Assuntos
Hepatócitos , Oligonucleotídeos , Oligonucleotídeos/metabolismo , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Ligantes , Hepatócitos/metabolismo , Carboidratos
6.
ACS Synth Biol ; 11(12): 3929-3938, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36367814

RESUMO

Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.


Assuntos
Toxina da Cólera , Fusão de Membrana , Glicolipídeos , Lipossomos/química , Lectinas
7.
Bioconjug Chem ; 33(12): 2341-2347, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36356167

RESUMO

Staphylococcus aureus sortase A is a transpeptidase that has been extensively exploited for site-specific modification of proteins and was originally used to attach a labeling reagent containing an LPXTG recognition sequence to a protein or peptide with an N-terminal glycine. Sortase mutants with other recognition sequences have also been reported, but in all cases, the reversibility of the transpeptidation reaction limits the efficiency of sortase-mediated labeling reactions. For the wildtype sortase, depsipeptide substrates, in which the scissile peptide bond is replaced with an ester, allow effectively irreversible sortase-mediated labeling as the alcohol byproduct is a poor competing nucleophile. In this paper, the use of depsipeptide substrates for evolved sortase variants is reported. Substrate specificities of three sortases have been investigated allowing identification of an orthogonal pair of enzymes accepting LPEToG and LPESoG depsipeptides, which have been applied to dual N-terminal labeling of a model protein mutant containing a second, latent N-terminal glycine residue. The method provides an efficient orthogonal site-specific labeling technique that further expands the biochemical protein labeling toolkit.


Assuntos
Aminoaciltransferases , Depsipeptídeos , Staphylococcus aureus , Aminoaciltransferases/química , Proteínas de Bactérias/química , Glicina , Indicadores e Reagentes
8.
JACS Au ; 2(9): 2038-2047, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186556

RESUMO

Post-translational glycosylation of proteins results in complex mixtures of heterogeneous protein glycoforms. Glycoproteins have many potential applications from fundamental studies of glycobiology to potential therapeutics, but generating homogeneous recombinant glycoproteins using chemical or chemoenzymatic reactions to mimic natural glycoproteins or creating homogeneous synthetic neoglycoproteins is a challenging synthetic task. In this work, we use a site-specific bioorthogonal approach to produce synthetic homogeneous glycoproteins. We develop a bifunctional, bioorthogonal linker that combines oxime ligation and strain-promoted azide-alkyne cycloaddition chemistry to functionalize reducing sugars and glycan derivatives for attachment to proteins. We demonstrate the utility of this minimal length linker by producing neoglycoprotein inhibitors of cholera toxin in which derivatives of the disaccharide lactose and GM1os pentasaccharide are attached to a nonbinding variant of the cholera toxin B-subunit that acts as a size- and valency-matched multivalent scaffold. The resulting neoglycoproteins decorated with GM1 ligands inhibit cholera toxin B-subunit adhesion with a picomolar IC50.

9.
Front Chem ; 10: 958272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186584

RESUMO

The chemoenzymatic synthesis of a series of dual N- and C-terminal-functionalized cholera toxin B subunit (CTB) glycoconjugates is described. Mucin 1 peptides bearing different levels of Tn antigen glycosylation [MUC1(Tn)] were prepared via solid-phase peptide synthesis. Using sortase-mediated ligation, the MUC1(Tn) epitopes were conjugated to the C-terminus of CTB in a well-defined manner allowing for high-density display of the MUC1(Tn) epitopes. This work explores the challenges of using sortase-mediated ligation in combination with glycopeptides and the practical considerations to obtain high levels of conjugation. Furthermore, we describe methods to combine two orthogonal labeling methodologies, oxime- and sortase-mediated ligation, to expand the biochemical toolkit and produce dual N- and C-terminal-labeled conjugates.

10.
Toxins (Basel) ; 14(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737057

RESUMO

Non-toxic derivatives of the cholera toxin are extensively used in neuroscience, as neuronal tracers to reveal the location of cells in the central nervous system. They are, also, being developed as vaccine components and drug-delivery vehicles. Production of cholera-toxin derivatives is often non-reproducible; the quality and quantity require extensive fine-tuning to produce them in lab-scale settings. In our studies, we seek a resolution to this problem, by expanding the molecular toolbox of the Escherichia coli expression system with suitable production, purification, and offline analytics, to critically assess the quality of a probe or drug delivery, based on a non-toxic derivative of the cholera toxin. We present a re-engineered Cholera Toxin Complex (rCTC), wherein its toxic A1 domain was replaced with Maltose Binding Protein (MBP), as a model for an rCTC-based targeted-delivery vehicle. Here, we were able to improve the rCTC production by 11-fold (168 mg/L vs. 15 mg/L), in comparison to a host/vector combination that has been previously used (BL21(DE3) pTRBAB5-G1S). This 11-fold increase in the rCTC production capability was achieved by (1) substantial vector backbone modifications, (2) using Escherichia coli strains capable of growth-decoupling (V strains), (3) implementing a well-tuned fed-batch production protocol at a 1 L scale, and (4) testing the stability of the purified product. By an in-depth characterization of the production process, we revealed that secretion of rCTC across the E. coli Outer Membrane (OM) is processed by the Type II secretion-system general secretory pathway (gsp-operon) and that cholera toxin B-pentamerization is, likely, the rate-limiting step in complex formation. Upon successful manufacturing, we have validated the biological activity of rCTC, by measuring its binding affinity to its carbohydrate receptor GM1 oligosaccharide (Kd = 40 nM), or binding to Jurkat cells (93 pM) and delivering the cargo (MBP) in a retrograde fashion to the cell.


Assuntos
Toxina da Cólera , Toxina da Cólera/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos
11.
Chem Soc Rev ; 51(10): 4121-4145, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35510539

RESUMO

Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases.


Assuntos
Cisteína Endopeptidases , Ligases , Proteínas de Bactérias/metabolismo , Catálise , Cisteína Endopeptidases/metabolismo , Ligases/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
12.
Biotechnol Adv ; 59: 107951, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398203

RESUMO

Glycan-recognizing toxins play a significant role in the etiology of many diseases afflicting humanity. The carbohydrate recognition domains of these toxins play essential roles in the virulence of many microbial organisms with multiple modes of action, from promoting pore formation to facilitating the entry of toxic enzymatic subunits into the host cell. Carbohydrate-binding domains with an affinity for specific glycan-based receptors can also be exploited for various applications, including detecting glycobiomarkers, as drug delivery systems, and new generation biopharmaceutical products and devices (e.g. glycoselective capture of tumor-derived exosomes). Therefore, understanding how to efficiently express and purify recombinant toxins and their carbohydrate-binding domains can enable opportunities for the formulation of innovative biopharmaceuticals that can improve human health. Here, we provide an overview of carbohydrate-binding toxins in the context of biotechnological innovation. We review 1) structural characteristics concerning the toxins' mode of action; 2) applications and therapeutic design with a particular emphasis on exploiting carbohydrate-binding toxins for production of anti-tumor biopharmaceuticals; discuss 3) possible ways to manufacture those molecules at a bioreactor scale using microbial expression systems, and 4) their purification using their affinity for glycans.


Assuntos
Toxinas Bacterianas , Produtos Biológicos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Carboidratos , Humanos , Polissacarídeos/química
13.
Biofilm ; 4: 100074, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35340817

RESUMO

Staphylococcus aureus (S. aureus) is an important human pathogen and a common cause of bloodstream infection. The ability of S. aureus to form biofilms, particularly on medical devices, makes treatment difficult, as does its tendency to spread within the body and cause secondary foci of infection. Prolonged courses of intravenous antimicrobial treatment are usually required for serious S. aureus infections. This work investigates the in vitro attachment of microbubbles to S. aureus biofilms via a novel Affimer protein, AClfA1, which targets the clumping factor A (ClfA) virulence factor - a cell-wall anchored protein associated with surface attachment. Microbubbles (MBs) are micron-sized gas-filled bubbles encapsulated by a lipid, polymer, or protein monolayer or other surfactant-based material. Affimers are small (∼12 kDa) heat-stable binding proteins developed as replacements for antibodies. The binding kinetics of AClfA1 against S. aureus ClfA showed strong binding affinity (KD = 62 ± 3 nM). AClfA1 was then shown to bind S. aureus biofilms under flow conditions both as a free ligand and when bound to microparticles (polymer beads or microbubbles). Microbubbles functionalized with AClfA1 demonstrated an 8-fold increase in binding compared to microbubbles functionalized with an identical Affimer scaffold but lacking the recognition groups. Bound MBs were able to withstand flow rates of 250 µL/min. Finally, ultrasound was applied to burst the biofilm bound MBs to determine whether this would lead to biofilm biomass loss or cell death. Application of a 2.25 MHz ultrasound profile (with a peak negative pressure of 0.8 MPa and consisting of a 22-cycle sine wave, at a pulse repetition rate of 10 kHz) for 2 s to a biofilm decorated with targeted MBs, led to a 25% increase in biomass loss and a concomitant 8% increase in dead cell count. The results of this work show that Affimers can be developed to target S. aureus biofilms and that such Affimers can be attached to contrast agents such as microbubbles or polymer beads and offer potential, with some optimization, for drug-free biofilm treatment.

14.
Chemistry ; 27(70): 17647-17654, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34665484

RESUMO

There is growing interest in developing methods to 'wrap' nano- and micron-sized biological objects within films that may offer protection, enhance their stability or improve performance. We describe the successful 'wrapping' of lectin-decorated microspheres, which serve as appealing model micron-sized objects, within cross-linked polymer film. This approach utilizes polymer chains able to undergo a structural metamorphosis, from being intramolecularly cross-linked to intermolecularly cross-linked, a process that is triggered by polymer concentration upon the particle surface. Experiments demonstrate that both complementary molecular recognition and the dynamic covalent nature of the crosslinker are required for successful 'wrapping' to occur. This work is significant as it suggests that nano- and micron-sized biological objects such as virus-like particles, bacteria or mammalian cells-all of which may benefit from additional environmental protection or stabilization in emerging applications-may also be 'wrapped' by this approach.


Assuntos
Polímeros , Animais , Microesferas
15.
Bioconjug Chem ; 32(10): 2205-2212, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34565149

RESUMO

A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited. Developing a method where a bacterial toxin's nontoxic targeting subunit can be assembled with a drug immediately prior to in vivo administration has the potential to circumvent some of these issues. Using a phage-display screen, we identified two antibody mimetics, anticholera toxin Affimer (ACTA)-A2 and ACTA-C6 that noncovalently associate with the nonbinding face of the cholera toxin B-subunit. In a first step toward the development of a nonviral motor neuron drug-delivery vehicle, we show that Affimers can be selectively delivered to motor neurons in vivo.


Assuntos
Toxina da Cólera , Toxinas Bacterianas , Imunoglobulinas , Neurônios Motores , Peptídeos
16.
Biochem J ; 478(14): 2927-2944, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34240737

RESUMO

The release of glucose from lignocellulosic waste for subsequent fermentation into biofuels holds promise for securing humankind's future energy needs. The discovery of a set of copper-dependent enzymes known as lytic polysaccharide monooxygenases (LPMOs) has galvanised new research in this area. LPMOs act by oxidatively introducing chain breaks into cellulose and other polysaccharides, boosting the ability of cellulases to act on the substrate. Although several proteins have been implicated as electron sources in fungal LPMO biochemistry, no equivalent bacterial LPMO electron donors have been previously identified, although the proteins Cbp2D and E from Cellvibrio japonicus have been implicated as potential candidates. Here we analyse a small c-type cytochrome (CjX183) present in Cellvibrio japonicus Cbp2D, and show that it can initiate bacterial CuII/I LPMO reduction and also activate LPMO-catalyzed cellulose-degradation. In the absence of cellulose, CjX183-driven reduction of the LPMO results in less H2O2 production from O2, and correspondingly less oxidative damage to the enzyme than when ascorbate is used as the reducing agent. Significantly, using CjX183 as the activator maintained similar cellulase boosting levels relative to the use of an equivalent amount of ascorbate. Our results therefore add further evidence to the impact that the choice of electron source can have on LPMO action. Furthermore, the study of Cbp2D and other similar proteins may yet reveal new insight into the redox processes governing polysaccharide degradation in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cellvibrio/enzimologia , Grupo dos Citocromos c/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Celulose/metabolismo , Cellvibrio/genética , Grupo dos Citocromos c/química , Grupo dos Citocromos c/genética , Peróxido de Hidrogênio/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Modelos Moleculares , Oligossacarídeos/metabolismo , Oxirredução , Oxigênio/metabolismo , Domínios Proteicos , Espectrofotometria/métodos , Especificidade por Substrato
17.
J Am Chem Soc ; 142(42): 18022-18034, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32935985

RESUMO

Multivalent lectin-glycan interactions are widespread in biology and are often exploited by pathogens to bind and infect host cells. Glycoconjugates can block such interactions and thereby prevent infection. The inhibition potency strongly depends on matching the spatial arrangement between the multivalent binding partners. However, the structural details of some key lectins remain unknown and different lectins may exhibit overlapping glycan specificity. This makes it difficult to design a glycoconjugate that can potently and specifically target a particular multimeric lectin for therapeutic interventions, especially under the challenging in vivo conditions. Conventional techniques such as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) can provide quantitative binding thermodynamics and kinetics. However, they cannot reveal key structural information, e.g., lectin's binding site orientation, binding mode, and interbinding site spacing, which are critical to design specific multivalent inhibitors. Herein we report that gold nanoparticles (GNPs) displaying a dense layer of simple glycans are powerful mechanistic probes for multivalent lectin-glycan interactions. They can not only quantify the GNP-glycan-lectin binding affinities via a new fluorescence quenching method, but also reveal drastically different affinity enhancing mechanisms between two closely related tetrameric lectins, DC-SIGN (simultaneous binding to one GNP) and DC-SIGNR (intercross-linking with multiple GNPs), via a combined hydrodynamic size and electron microscopy analysis. Moreover, a new term, potential of assembly formation (PAF), has been proposed to successfully predict the assembly outcomes based on the binding mode between GNP-glycans and lectins. Finally, the GNP-glycans can potently and completely inhibit DC-SIGN-mediated augmentation of Ebola virus glycoprotein-driven cell entry (with IC50 values down to 95 pM), but only partially block DC-SIGNR-mediated virus infection. Our results suggest that the ability of a glycoconjugate to simultaneously block all binding sites of a target lectin is key to robust inhibition of viral infection.


Assuntos
Carboidratos/uso terapêutico , Ouro/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Lectinas/uso terapêutico , Nanopartículas Metálicas/química , Sondas Moleculares/uso terapêutico , Polissacarídeos/uso terapêutico , Sítios de Ligação , Carboidratos/química , Ouro/química , Humanos , Lectinas/química , Ligantes , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Polissacarídeos/química
18.
Org Biomol Chem ; 18(30): 5982, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32706355

RESUMO

Correction for 'Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation' by Robin L. Brabham et al., Org. Biomol. Chem., 2020, 18, 4000-4003, DOI: 10.1039/D0OB00972E.

19.
Org Biomol Chem ; 18(21): 4000-4003, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32427272

RESUMO

The α-oxo aldehyde is a highly reactive aldehyde for which many protein bioconjugation strategies exist. Here, we explore the genetic incorporation of a threonine-lysine dipeptide into proteins, harbouring a "masked"α-oxo aldehyde that is rapidly unveiled in four minutes. The reactive aldehyde could undergo site-specific protein modification by SPANC ligation.


Assuntos
Aldeídos/metabolismo , Aminoácidos/metabolismo , Ácido Periódico/metabolismo , Proteínas/metabolismo , Aldeídos/química , Aminoácidos/química , Dipeptídeos/química , Dipeptídeos/genética , Dipeptídeos/metabolismo , Conformação Molecular , Ácido Periódico/química , Proteínas/química , Proteínas/genética
20.
Chem Commun (Camb) ; 56(47): 6408-6411, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32390019

RESUMO

The first synthesis of 3-deoxy-3-fluoro-l-fucose is presented, which employs a d- to l-sugar translation strategy, and involves an enzymatic oxidation of 3-deoxy-3-fluoro-l-fucitol. Enzymatic activation (FKP) and glycosylation using an α-1,2 and an α-1,3 fucosyltransferase to obtain two fluorinated trisaccharides demonstrates its potential as a novel versatile chemical probe in glycobiology.


Assuntos
Fucosiltransferases/metabolismo , Glicoconjugados/biossíntese , Trissacarídeos/biossíntese , Fucosiltransferases/química , Glicoconjugados/química , Glicosilação , Halogenação , Conformação Molecular , Oxirredução , Trissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA